R and Python: How to Integrate the Best of Both into Your Data Science Workflow


@noeliagorod

Post HERE

From Executive Business Leadership to Data Scientists, we all agree on one thing: A data-driven transformation is happening. Artificial Intelligence (AI) and more specifically, Data Science, are redefining how organizations extract insights from their core business(es). We’re experiencing a fundamental shift in organizations in which “approximately 90% of large global organizations with have a Chief Data Officer by 2019”. Why? Because, when the ingredients of a “high performance data science team” are present (refer to this Case Study), organizations are able to generate massive return on investment (ROI). However, data science teams tend to get hung up on a “battle” waged between the two leading programming languages for data science: R versus Python.

Key Strengths, R and Python

In our recent article, “Case Study: How To Build A High Performance Data Science Team”, we exposed how a real company (Amadeus Investment Partners) is utilizing a…

View original post 3,471 more words

I’d love to hear any tips you’re willing to share in the comments!

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.